Join us

It is the first time that I put on a post to say “Hey! Join us, if you are interested in.”

We are doing amazing research here with incredible enthusiasm and broad interests.

There are tons of reasons that people choose to do research; it could be a hobby, or to make a living, or any reason you name it, but my favourite reason is always that you love it. If you love your job, then you will do it with passion and happiness. 996 is never a problem only if you love it. (Well, it doesn’t mean 996 in our team…I never advocate that. See the photo, people played badminton; and we should do it more later on.)

My interests include (but not limited to)

1. Impact of electricity on clay minerals

By applying electric voltage on clay minerals, we look at the variation of its mineral structure and engineering behaviours. This could be a scientific research on clay mineral level (chemical & micro level); it could also be linked to potential engineering application in the area of geotechnical and geoenvironmental engineering.

2. Soil remediation and ground water treatment

This is a research area on removal of pollutants from contaminated soil or protection of ground water. This research topic can be linked to EK technique as well. And another possibility is to use Fe-rich clay minerals as redox materials for ground water treatment.

3. Dewatering and consolidation

This topic is about removal of water from very fine-grained soil, like sludge, slurry, clay, etc. These kinds of materials have very low hydraulic conductivity, but electro-osmosis can be an effective method for dewatering and consolidation of them. We are looking at the challenges of this EO technique in large scale of application.

4. Geosynthetics

We are interested in application of geosynthetics.

1) Reinforcement, which is a very popular application for decades and lots of people from academy and industry are doing it.

2) Filtration and drainage. This topic is related to dewatering and consolidation. One of the special issues that we are especially interested in is the clogging problem of geotextiles. There are lot of things to do, include mechanism of clogging, update of manufacturing and design code, invention of novel types of geotextiles.

3) One more thing about geosynthetics, which is special for our research is EKG. This novel material presents a new category of geosynthetic and I’ve been staying in this topic for over decade.

5. Unsaturated soil, constitutive model and numerical modelling

We are carrying out this research partially also because of EK technique. When applying EK technique, it is related to unsaturated soil and suction. Therefore, we’ve been developing completely new constitutive model and trying to apply it in suction measurement, EK design and also trying to develop code for numerical modelling and software for EK design.

6. Mining, tailing, liquefaction, etc.

More researches that are related to my basic interests previously mentioned are being explored, we will see more ideas and fantastic work coming up.

So…welcome to join us…

And also, any collaboration is welcome.

Looking forward to hearing from you

Yan-feng Zhuang (zhuang@tsinghua.edu.cn)

唧唧复唧唧,我是泰沙基

该贴部分引自知乎(英文部分另有出处,分别见下文链接)
Terzaghi文稿 | 土力学—工程科学的新篇章

“Soil Mechanics arrived at the borderline between science and art. I use the term “art” to indicate mental processes leading to satisfactory results without the assistance of step-for-step logical reasoning…To acquire competence in the field of earthwork engineering one must live with the soil. One must love it and observe its performance not only in the laboratory but also in the field, to become familiar with those of its manifold properties that are not disclosed by boring records…”

Karl-Terzaghi-The-Engineer-as-Artist

↓↓↓

Continue reading “唧唧复唧唧,我是泰沙基”

An interesting historical paper on electro-osmosis

I believe that most information is somewhere on the internet; the question is if you can find it. This is part of a paper about the history of electro-osmosis, which was digitized by google.
In ancient time, scientific discovery was communicated within scientists via correspondence, which is good, but rather impossible now. The latest news about coronavirus… Are those … working for helping people or just for publishing papers?

Porrett

汪闻韶与电渗

在对土中电渗问题的研究中,他澄清了电渗对饱和土力学性状的影响;提出了电渗和水力渗透混合流公式;解释了电渗加固软土的机理,说明了电渗在土力学中的应用:

1)是利用电渗对孔隙水动力学性的影响,在适当的布置下,使土体稳定性暂时获得加强。2)是利用电渗排水,降低土中含水量。3)是利用电渗促进土中束缚水移动的作用,促进地基软粘土层的固结。4)是利用直流电在土中所引起的离子交换和新化合物形成与胶积等物理化学作用,增进土的强度,减少土的塑性、干缩性。5)是利用电渗作用在土中灌注化学溶液以改进土的工程性质。六是利用连续间歇的电场作用,减少土壤侧面的阻力,可用于打桩、拔桩等工程。

汪闻韶的《直流电在土中作用及其对土的物理力学性的影响》论文获得中国科学院科学奖金三等奖。

汪闻韶_献身水利__情深似海_彭小东

Continue reading “汪闻韶与电渗”

电渗与疏浚淤泥脱水

Yan-feng Zhuang. Electro-Osmosis and Dredged Sludge Dewatering.
Ground Improvement. 2015, Vol.26 No.4, PP: 48-52.

摘要:本文以欧洲疏浚淤泥处理项目AMORAS 为对照,对比了电渗法和压滤法淤泥脱水的效果:电渗法 脱水可将淤泥含水量降低到40%,优于淤泥脱水54-67%的含水量要求(此处含水量根据岩土工程的定义计算);电渗法的脱水速度快,可减少储泥池的库容。EKG 材料的出现解决了电极腐蚀和电渗能耗过大的 问题,目前电渗法在大面积应用中的主要问题是电源功率过大,该问题通过重新设计直流电源,采用轮询通电的方法解决,目前已有专用的电渗电源,电渗法已有望进入真正工程应用阶段。
关键词:电渗;疏浚;淤泥脱水;EKG;轮询通电;AMORAS

庄艳峰-电渗与疏浚淤泥脱水